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Abstract: Even though mutualistic interactions are ubiquitous in nature, we are still far from making
good predictions about the fate of mutualistic communities under threats such as habitat fragmentation
and climate change. Fragmentation often causes declines in abundance of a species due to increased
susceptibility to edge effects between remnant habitat patches and lower quality “matrix” surrounding
these focal patches. It has been argued that ecological communities are replete with trait-mediated
indirect effects, and that these effects may sometimes contribute more to the dynamics of a population
than direct density-mediated effects, e.g., lowering an organism’s fitness through competitive interac-
tions. Although some studies have focused on trait-mediated behavior such as trait-mediated dispersal,
in which an organism changes its dispersal patterns due to the presence of another species, they have
been mostly limited to predator-prey systems–little is known regarding their effect on other interac-
tion systems such as mutualism. Here, we explore consequences of fragmentation and trait-mediated
dispersal on coexistence of a system of two mutualists by employing a model built upon the reaction
diffusion framework. To distinguish between trait-mediated dispersal and density-mediated effects, we
isolate effects of trait-mediated dispersal on the mutualistic system by excluding any direct density-
mediated effects in the model. Our results demonstrate that fragmentation and trait-mediated dispersal
can have important impacts on coexistence of mutualists. Specifically, one species can be better able to
invade and persist than the other and be crucial to the success of the other species in the patch. Matrix
quality degradation can also bring about a complete reversal of the role of which species is support-
ing the other’s persistence in the patch, even as the patch size remains constant. As most mutualistic
relationships are identified based on density-mediated effects, such an effect may be easily overlooked.
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1. Introduction

Mutualistic interactions are ubiquitous in nature and have been suggested to be the backbone of eco-
logical communities [1–4]. Since mutualisms are found in all organismal kingdoms and in all ecosys-
tems, they have become the focus of many empirical studies. Even so, mutualisms remain somewhat
understudied relative to negative interactions such as competition, predation, and parasitism–especially
with regard to theoretical studies [5]. We are also still far from making good predictions about the fate
of mutualistic communities under threats such as habitat fragmentation and climate change [2].

Interspecific interactions affect populations both directly (e.g., density-mediated effects) and indi-
rectly (e.g., trait-mediated indirect effects). For example, most predator-prey studies are concerned
with the rate of prey consumption by a predator and those effects on prey density (a density-mediated
effect), as opposed to influence of the predator on the phenotype of the surviving prey (a trait-mediated
indirect effect) (see [6–8]). In fact, the authors in [6] have argued that ecological communities are
replete with trait-mediated indirect effects arising from phenotypic plasticity and these effects are
important to community dynamics. These trait-mediated indirect effects are also expected to con-
tribute strongly to many phenomena that traditionally have been solely attributed to density-mediated
effects [6, 7].

Trait-mediated behavioral responses to other species can affect the dynamics of a population sig-
nificantly (see [6] and [9]). One such effect is trait-mediated dispersal, in which an organism changes
its dispersal patterns due to the presence of another species, which can, in turn, modify population
dynamics and species interactions (see [10], for example). This idea has been studied in the predator-
prey context (though scarcely), where increased predation risk was shown to increase emigration rates
of prey. In [11], the authors found evidence of predator-induced emigration in a spider (predator)
and planthopper (prey) system, and even concluded that at high predator density, the predator had
a greater impact on prey density through induced emigration than consumption (also see [12–14]).
However, few studies have been devoted to trait-mediated dispersal in other interaction scenarios, e.g.,
mutualism or competition [15]. One example of trait-mediated dispersal in a mutualism involves ant
tending of aphids. Aphids produce honeydew, a sugar-rich byproduct of feeding on phloem sap of
plants. Aphids exchange honeydew for protection by ants from predators and parasitoids [16]. Inter-
estingly, ant-derived substances have been shown to reduce the production of alates (winged morphs),
delay dispersal, and restrict the mobility of wingless aphids [17–19]. In other protection mutualisms,
plant-produced volatiles can arrest the dispersal of parasitoids and predators, leading to higher mor-
tality of the plant’s herbivores [20]. Given the presumed benefits of the mutualistic interaction, trait-
mediated indirect effects that alter dispersal are likely much more common than the published literature
would suggest.

Fragmentation of habitats has been greatly exacerbated by human activities over the past centuries
(e.g., [21–23]). This fragmentation creates landscape-level spatial heterogeneity which in turn influ-
ences the population dynamics of the resident species. Often, it leads to declines in abundance of the
species due to increased susceptibility to edge effects between the remnant habitat patches and the
lower quality human-modified “matrix” surrounding these focal patches [24–26]. Matrix composition
and hostility can have profound effects on persistence of a single species (e.g., [27–31]), as well as
coexistence of a system of interacting species (e.g., a host-parasitoid system in [32] and a competitive
system in [26] and [33]). In fact, matrix quality degradation has been shown to cause a reversal in
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competitive dominance in a theoretical model of two competitive species (see [26] and [33]).

In this paper, we explore the consequences of fragmentation and trait-mediated dispersal on the
coexistence of a system of two mutualists by employing a model built upon the reaction diffusion
framework. Specifically, we consider a theoretical system of two mutualists that both exhibit trait-
mediated dispersal in that each species reduces its emigration from their focal patch in the presence
of the other species. Both organisms inhabit a patch surrounded by a hostile matrix, in which their
movement follows a random walk (diffusion) inside the patch but follows a biased random walk at the
patch boundary. In particular, the probability of remaining inside the patch upon reaching the boundary
is an increasing function of the other organism’s population density at the boundary. Effects of habitat
fragmentation are integrated into the model via parameters for patch size and effective matrix hostility.
We further assume that their density-mediated effects are negligible, i.e., the presence of the other
organism inside the patch has no effect on their own density. As it is difficult to differentiate between
impacts from density-mediated effects and trait-mediated indirect effects (see [6], for example), we
aim to isolate the effects of trait-mediated dispersal on the system and attempt to draw more general
conclusions regarding that mechanism. Thus, our model is not intended to be a detailed description
of any particular system but is intended to be a caricature designed to explore the effects of habitat
fragmentation on a mutualistic system that exhibits trait-mediated dispersal. The modeling approach
employed here is based on a system of reaction diffusion equations.

In Section 1.1, we detail the modeling framework, followed by preliminary results in Section 2.
Statement of our main results is found in Section 3, followed by proofs of main results in Section 4.
Finally, we discuss their implications in Section 5.

1.1. Modeling framework

We present and study a system built upon the reaction diffusion framework which will model inter-
actions of two mutualistic species that obey logistic growth laws and exhibit trait-mediated dispersal.
Reaction diffusion models have been used extensively in the literature, see [34–40] and references
therein for a detailed history of the framework. Here, we assume a situation where two organisms
are dwelling in a single focal patch Ω0 = {`x | x ∈ Ω} with patch size ` > 0, Ω = (0, 1) or Ω ⊂ Rn

having unit measure (e.g., if n = 2 then the area of Ω is one) and smooth boundary with n = 2, 3,
that is surrounded by a hostile matrix, denoted by ΩM = Rn \ Ω0, where it is assumed that organisms
are experiencing exponential decay at fixed rate (say, S 0 > 0). We also denote the boundary of Ω0

by ∂Ω0. Here, the variable t represents time and x represents spatial location within the patch. The
two organisms are following an unbiased random walk inside both patch and matrix, while following a
biased random walk on the patch/matrix interface, i.e., a discontinuity between the density in the patch
and matrix is allowed at the interface, while maintaining continuity in the flux (see e.g., [41–43]). In
particular, organisms recognize the patch/matrix interface and modify their random walk movement
probability (i.e., probability of an organism moving at a given time step in the random walk process),
random walk step length (i.e., distance that an organism moves during a given time step), and proba-
bility of remaining in the patch (say α). In this patch-level setting, dispersal from the patch is equated
to organisms reaching the patch/matrix interface, leaving the patch with probability 1− α that may de-
pend upon conspecific or even interspecific density, and entering the matrix, where they still have the
opportunity to re-enter the patch at the interface. Following the derivation given in [30], the following
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reaction diffusion system:

ut = D1∆u + r1u(1 − u); t > 0, x ∈ Ω0

vt = D2∆v + r2v(1 − v); t > 0, x ∈ Ω0

u(0, x) = u0(x); x ∈ Ω0

v(0, x) = v0(x); x ∈ Ω0

D1α1(v)∂u
∂η

+ S ∗1 [1 − α1(v)] u = 0; t > 0, x ∈ ∂Ω0

D2α2(u) ∂v
∂η

+ S ∗2 [1 − α2(u)] v = 0; t > 0, x ∈ ∂Ω0

(1.1)

will exactly model the study system in the case of a one-dimensional patch in the sense that steady
states of (1.1) and their stabiltiy properties will be exactly the same as those of the study system
(see Appendix C of [30] and references therein) and provide a reasonable approximation of the study
system in the case of a simply connected, convex patch in two- or three-dimensions. Here, Di > 0
represents patch diffusion rate, ri > 0 the patch intrinsic growth rate, u0(x), v0(x) initial population
density distributions in the patch, and αi the probability of an individual remaining in the patch upon
reaching the boundary (i = 1 for u and i = 2 for v). The term ∂

∂η
denotes the outward normal derivative

operator. Note that the parameter S ∗i ≥ 0 is a measure of hostility of the matrix towards the organism,
has units of length by time, and can assume different forms depending upon the patch/matrix interface
assumptions (see [30]). If αi ≡ 0 then the boundary is absorbing, i.e., all individuals that reach the
boundary will emigrate, whereas if αi ≡ 1 then the boundary is reflecting, i.e., the emigration rate
is zero. Also, a given relationship between density and emigration can be included in the model by
selecting appropriate αi’s (see, for example, [28–30, 44, 45]).

We now introduce a standard scaling,

x̃ =
x
`

& t̃ = r1t. (1.2)

After applying this scaling and dropping the tilde, (1.1) becomes

ut = 1
λ
∆u + u(1 − u); t > 0, x ∈ Ω

vt = D0
λ

∆v + r0v(1 − v); t > 0, x ∈ Ω

u(0, x) = u0(x); x ∈ Ω

v(0, x) = v0(x); x ∈ Ω
∂u
∂η

+
√
λg(v)u = 0; t > 0, x ∈ ∂Ω

∂v
∂η

+
√
λh(u)v = 0; t > 0, x ∈ ∂Ω

(1.3)

with corresponding steady state equation:
−∆u = λu(1 − u); Ω

−∆v = λrv(1 − v); Ω
∂u
∂η

+
√
λg(v)u = 0; ∂Ω

∂v
∂η

+
√
λh(u)v = 0; ∂Ω

(1.4)
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where λ = r1`
2

D1
, r0 = r2

r1
, D0 = D2

D1
, r = r0

D0
, g(v) =

S ∗1√
r1D1

1−α1(v)
α1(v) , and h(u) =

S ∗2√
r1D1D0

1−α2(u)
α2(u) are all unitless.

Also, recall that Ω has length, area, or volume of one. Thus, for fixed r1, r2,D1,D2, the composite
parameter λ is proportional to patch size squared, g(0) represents the effective matrix hostility towards
u, and h(0) the effective matrix hostility towards v. Here, we assume that α1, α2 are smooth increasing
functions of v, u, respectively, such that g, h ∈ C1([0,∞), (0,∞)) are decreasing functions of v, u, re-

spectively. Also, r can be written as r =
r2
D2
r1
D1

and interpreted as a means to compare the two species by

their growth to diffusion ratio, defined as the ratio of patch intrinsic growth rate to patch diffusion rate.
Thus, there are three cases: (1) if r = 1, then both growth to diffusion ratios are the same, (2) if r > 1
then v’s growth to diffusion ratio is greater than u’s, and (3) if r < 1 then u’s ratio is greater than v’s.

2. Preliminaries

We first note that the general theory for reaction diffusion systems such as (1.3) is well established
(e.g., see [39] and [46]). Since our assumption on g, h ensures that (1.3) is a quasimonotone non-
decreasing system, an application of Theorem 3.1 of Chapter 9 in [46] with subsolution (0, 0) and
supersolution (M1,M2) (M1,M2 ≥ 1) of (1.3) guarantees existence and uniqueness of a solution to
(1.3). Moreover, solutions with nonnegative initial data exist and remain nonnegative for all time. Pre-
dictions of persistence, coexistence, and extinction in reaction diffusion systems can be explored via
determination of the stability of the trivial steady state (0, 0) and semitrivial steady states (u∗, 0) and
(0, v∗). Generally, stability of trivial and semitrivial steady states is determined by the sign of principal
eigenvalues of their linearizations around the trivial or semitrivial steady states (for example, see [39]).
In this paper, we will assume the conventional view of “invasibility implies persistence” (see [39], for
example). In this setting, prediction that an organism can invade the patch with small positive initial
density implies that the organism can colonize the patch and persist. In the remainder of this section,
we discuss some eigenvalue problems for which our coexistence results are built upon, beginning with
the eigenvalue problem:

{
−∆z = Ez; Ω

∂z
∂η

+ Mz = 0; ∂Ω
(2.1)

for a given M ∈ [0,∞). In [47], the authors proved that for each M ∈ [0,∞), (2.1) has a positive prin-
cipal eigenvalue Ē1(M), Ē1(0) = 0, and the eigencurve Ē1 : [0,∞) → [0,∞] is Lipschitz continuous,
strictly increasing and concave (see Figure 1). Furthermore, Ē1(M)→ ED

1 as M → ∞ where ED
1 is the

principal eigenvalue to the Dirichlet eigenvalue problem:

{
−∆z = Ez; Ω

z = 0; ∂Ω.
(2.2)
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Figure 1. Principal eigencurve Ē1(M).

Next, we recall the eigenvalue problem discussed in [48]:{
−∆z = rEz; Ω

∂z
∂η

+ K
√

Ez = 0; ∂Ω
(2.3)

where K is a positive parameter. For fixed r and K, let E1(r,K) denote the principal eigenvalue of
(2.3). See [48] for the existence of this principal eigenvalue. Namely, rE1(r,K) is the y-coordinate of
the intersection of the curves Ē1(M) and M2

K2 (see Figure 2).

Figure 2. Existence of E1(r,K).

For a fixed r, it is easy to see that E1(r,K) is an increasing function of K, E1(r,K) → ED
1 as K → ∞,

and E1(r,K)→ 0 as K → 0. Also, since the intersection of Ē1(M) and M2

K2 is independent of r, we must
have

rE1(r,K) = E1(1,K); for all r > 0. (2.4)
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By (2.4), it is easy to see that for a fixed K, E1(r,K) is decreasing in r, E1(r,K) → 0 as r → ∞, and
E1(r,K)→ ∞ as r → 0. Furthermore, it is easy to see that the following lemma holds:

Lemma 2.1. For any K1,K2 positive constants there exists r∗ = r∗(K1,K2) > 0 such that E1(1,K1) =

E1(r∗,K2). Moreover, r∗ > 1 when K1 < K2, r∗ < 1 when K1 > K2, and r∗ = 1 when K1 = K2.

Now, we consider (1.4) in the cases when one population is present and the other is absent, namely:{
−∆w1 = λw1(1 − w1); Ω
∂w1
∂η

+
√
λg(0)w1 = 0; ∂Ω

(2.5)

and {
−∆w2 = λrw2(1 − w2); Ω
∂w2
∂η

+
√
λh(0)w2 = 0; ∂Ω.

(2.6)

In other words, (2.5) is the governing steady state equation for the species u in the absence of v and
(2.6) is the governing steady state equation for the species v in the absence of u. The solution structure
of (2.5) and (2.6) can be completely determined by consideration of the eigenvalue problems:{

−∆φ1 − λφ1 = σφ1; Ω
∂φ1
∂η

+
√
λg(0)φ1 = 0; ∂Ω

(2.7)

and {
−∆φ2 − λrφ2 = σφ2; Ω
∂φ2
∂η

+
√
λh(0)φ2 = 0; ∂Ω.

(2.8)

We note that, together, (2.7) and (2.8) comprise the linearization of (1.4) around (0, 0). Let σ1 =

σ1(Ω, λ, g(0)) and σ2 = σ2(Ω, λ, r, h(0)) be the principal eigenvalues of (2.7) and (2.8), respectively,
with corresponding normalized eigenfunctions φ1 and φ2 chosen such that φ1, φ2 > 0; Ω.
In [48], the authors established the following lemma which guarantees the existence of w̃1 and w̃2.

Lemma 2.2. We have the following:

(1) If σ1 ≥ 0 then w1 ≡ 0 is the only nonnegative solution of (2.5) and is globally asymptotically
stable.

(2) If σ1 < 0 then the trivial solution of (2.5) is unstable. Furthermore, there exists a unique positive
asymptotically stable solution w̃1 of (2.5).

(3) If σ2 ≥ 0 then w2 ≡ 0 is the only nonnegative solution of (2.6) and is globally asymptotically
stable.

(4) If σ2 < 0 then the trivial solution of (2.6) is unstable. Furthermore, there exists a unique positive
asymptotically stable solution w̃2 of (2.6).

Moreover, w̃i ≤ 1; Ω̄ for i = 1, 2.

Namely, they established the exact bifurcation diagrams (λ, ||w̃1||) and (λ, ||w̃2||) illustrated in Figures 3
and 4.
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Figure 3. Bifurcation diagram of w̃1. Figure 4. Bifurcation diagram of w̃2.

Finally, we consider two eigenvalue problems involving w̃1 and w̃2:{
−∆φ3 − λrφ3 = σφ3; Ω

∂φ3
∂η

+
√
λh(w̃1)φ3 = 0; ∂Ω

(2.9)

and {
−∆φ4 − λφ4 = σφ4; Ω

∂φ4
∂η

+
√
λg(w̃2)φ4 = 0; ∂Ω.

(2.10)

Notice that (2.9) and (2.10) are part of the linearizations of (1.4) about (w̃1, 0) and (0, w̃2), respectively.
Let σ3 = σ3(Ω, λ, r, h(w̃1)), σ4 = σ4(Ω, λ, g(w̃2)) be the principal eigenvalues and φ3, φ4 > 0; Ω be the
corresponding normalized eigenfunctions of (2.9) and (2.10), respectively.

With these principal eigenvalues defined, we can now differentiate the cases of the composite pa-
rameter r in terms of predictions from the model. Since this comparison deals with intrinsic properties
of the species, we assume here that the effective matrix hostility is the same for both u and v, i.e.,
g(0) = h(0). In the case that r = 1 (growth to diffusion ratios are the same for u and v), we have
that E1(1, g(0)) = E1(r, h(0)) implying that both species will have the same minimum patch size re-
quirement in order to invade and persist in the patch. Using this a comparison tool, the species are
essentially the same. In the case that r > 1 (growth to diffusion ratio of v is larger than that of u), we
have that E1(1, g(0)) > E1(r, h(0)) implying that, v is better able to invade and persist, in the absence of
any mutualistic assistance, in smaller patches than u. The opposite is true in the case that r < 1 (growth
to diffusion ratio of u is larger than that of v), since we have that E1(1, g(0)) < E1(r, h(0)) implying
that u is better able to invade and persist than v, in the absence of any mutualistic assistance, in smaller
patches than v. As an example, if both species have the same patch diffusion rate, but u has a larger
intrinsic growth rate (i.e., r1 > r2) then u is better able to invade and persist than v due to the higher
growth rate being able to offset losses due to encountering mortality at the boundary of the patch. On
the other hand, if both species have the same intrinsic growth rate, but u has a larger patch diffusion
rate then v is better able to invade and persist due to the higher diffusion rate causing more of the u
population to encounter the boundary of the patch and be exposed to mortality from the hostile matrix.

Finally, we give a characterization of the stability of the trivial and semitrivial steady states of (1.3)
in Table 1. These stability results, which are taken in the Lyapunov sense, can be proved using similar
ideas as those presented in [46] and are included to help provide greater context to our coexistence
results. Rigorous proofs of these properties are forthcoming in [49].
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Table 1. Listing of the different trivial and semitrivial stability scenarios based upon the sign
of σi, i = 1, 2, 3, 4.

Principal Eigenvalue Steady State Stability Properties

(σ1, σ2) (0, 0)
Stable if σ1, σ2 > 0

Unstable if σ1 ≤ 0 or σ2 ≤ 0

σ3 (u∗, 0)
Stable if σ3 > 0

Unstable if σ3 ≤ 0

σ4 (0, v∗)
Stable if σ4 > 0

Unstable if σ4 ≤ 0

3. Main results

In this section, we present sufficient conditions for coexistence to occur and conditions for which
coexistence cannot be attained.

Theorem 3.1. Let r > 0 be given and define λ∗ = max{E1(1, g(1)), E1(r, h(1))} and λ∗∗ =

max{E1(1, g(0)), E1(r, h(0))}. Then the following hold:

(a) If λ < λ∗ then (1.4) has no positive solution, i.e., coexistence is not possible.

(b) If λ > λ∗∗ then (1.4) has at least one positive solution. All positive solutions, (u∗, v∗), of (1.4)
satisfy (u∗, v∗) > (w̃1, w̃2); Ω. Furthermore, any solution of (1.3), (u, v), with small positive initial
density will satisfy (u(t, x), v(t, x)) > (w̃1(x), w̃2(x)); t > t1, x ∈ Ω, for some t1 > 0 that depends on
the initial density.

Remark
It is possible for λ∗ to be greater than either E1(1, g(0)) or E1(r, h(0)), giving rise to a situation in which
one organism could invade and survive in the patch regardless of the presence of the other species, but
the patch size is still too small to foster coexistence. For simplicity of presentation, we only display
the case that λ∗ is less than both E1(1, g(0)) and E1(r, h(0)).

We now provide sufficient conditions, split into three cases depending on the comparison of
E1(1, g(0)) and E1(r, h(0)), that will guarantee coexistence in the patch. Following these results, we
provide a table depicting the portions of the parameter space corresponding to each of the three cases,
and a brief description of their biological interpretation.

First, we consider the case when E1(1, g(0)) = E1(r, h(0)) with a pictorial description given in
Figure 5 and a bifurcation diagram showing one possibility for the complete solution structure of (1.4)
in the case of a one-dimensional patch in Figure 6. Details regarding creation of bifurcation diagrams
representing the solution structure of (1.4) can be found in [49], which is forthcoming.

Theorem 3.2. Let g(0), h(0) and r be fixed such that E1(1, g(0)) = E1(r, h(0)). Then

(a) σ1, σ2 ≥ 0 for λ ≤ E(1, g(0))

(b) σ1, σ2, σ3, σ4 < 0 for λ > E1(1, g(0))

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7838–7861.
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(c) λ∗ < E1(1, g(0)) = E1(r, h(0)).
Case: 𝐸ଵ 1, 𝑔 0 = 𝐸ଵ 𝑟, ℎ 0

λ~ Patch Size Squared

(B)

Dynamics can  vary & depend 
on geometry of Ω.

(C)

Coexistence

Eଵ 𝑟, ℎ 0 = Eଵ 1, 𝑔 0 Eଵ
஽

0
𝜆∗

(A)

Coexistence is 
not possible.

λ

Neither 𝑢 nor 𝑣 can invade Ω with small initial density
(0,0) is stable.

𝑢 invades/persists on its own

𝑣 invades/persists on its own

Figure 5. Existence versus λ when E1(1, g(0)) = E1(r, h(0)).

Figure 6. Example of a bifurcation diagram for the case E1(1, g(0)) = E1(r, h(0)).

Next, we consider the case when E1(1, g(0)) > E1(r, h(0)) with a pictorial description given in Figure 7
and a bifurcation diagram showing one possibility for the complete solution structure of (1.4) in the
case of a one-dimensional patch in Figure 8 (see [49]).

Theorem 3.3. Let g(0), h(0) and r be fixed such that E1(1, g(0)) > E1(r, h(0)) then there exist δ1 =

δ1(g(0), h(0), r) and δ2 = δ2(g(0), h(0), r), both positive, such that

(a) σ1 ≥ 0 for λ ≤ E1(1, g(0)) and σ1 < 0 for λ > E1(1, g(0))

(b) σ2 ≥ 0 for λ ≤ E1(r, h(0)) and σ2 < 0 for λ > E1(r, h(0))

(c) σ3 < 0 for λ > E1(1, g(0))

(d) σ4 > 0 for λ ∈ (E1(r, h(0)), E1(r, h(0)) + δ1) and σ4 < 0 for λ > E1(1, g(0)) − δ2
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Moreover, for λ ∈ (E1(1, g(0)) − δ2, E1(1, g(0))) (1.4) has a positive solution and there exists an ε1 > 0
such that any solution of (1.3) with (u(0, x), v(0, x)) ≥ (≈) (εφ4(x), w̃2(x)); Ω and ε < ε1 will converge
to a positive coexistence steady state of (1.3) as t → ∞ (see region (E) in Figure 7).

Case: 𝐸ଵ 1, 𝑔 0 > 𝐸ଵ 𝑟, ℎ 0

λ~ Patch Size Squared

(C)
𝑢 cannot 

invade with 
small initial 

density
0, 𝑣∗

stable.

(B)
Dynamics can  
vary & depend 
on geometry of 

Ω.

(D)
Dynamics 
can vary & 
depend on 
geometry 

of Ω.

(E)
Coexistence 

& 𝑢 can 
invade if 𝑣 is 

present.
0, 𝑣∗ is 

unstable.

(F)

Coexistence

Eଵ 𝑟, ℎ 0 Eଵ 𝑟, ℎ 0 + 𝛿ଵ Eଵ 1, 𝑔 0 − 𝛿ଶ Eଵ 1, 𝑔 0 Eଵ
஽

0
𝜆∗

(A)

Coexistence is 
not possible.

λ

Neither 𝑢 nor 𝑣 can invade Ω with 
small initial density

(0,0) is stable.
𝑣 invades/persists on its own

𝑢 invades/persists on its own

Figure 7. Existence versus λ when E1(1, g(0)) > E1(r, h(0)).

Figure 8. Example of a bifurcation diagram for the case E1(r, h(0)) < E1(1, g(0)).

We now consider the case when E1(1, g(0)) < E1(r, h(0)) with a pictorial description given in Fig-
ure 9 and a bifurcation diagram, showing one possibility for the complete solution structure of (1.4) in
the case of a one-dimensional patch in Figure 10 (see [49]).

Theorem 3.4. Let g(0), h(0) and r be fixed such that E1(1, g(0)) < E1(r, h(0)) then there exist δ1 =

δ1(g(0), h(0), r) and δ2 = δ2(g(0), h(0), r), both positive, such that

(a) σ1 ≥ 0 for λ ≤ E1(1, g(0)) and σ1 < 0 for λ > E1(1, g(0))

(b) σ2 ≥ 0 for λ ≤ E1(r, h(0)) and σ2 < 0 for λ > E1(r, h(0))
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(c) σ4 < 0 for λ > E1(r, h(0))

(d) σ3 > 0 for λ ∈ (E1(1, g(0)), E1(1, g(0)) + δ1) and σ3 < 0 for λ > E1(r, h(0)) − δ2

Moreover, for λ ∈ (E1(r, h(0)) − δ2, E1(r, h(0))) (1.4) has a positive solution and there exists an ε1 > 0
such that any solution of (1.3) with (u(0, x), v(0, x)) ≥ (≈) (w̃1(x), εφ3(x)); Ω and ε < ε1 will converge
to a coexistence steady state of (1.3) as t → ∞ (see region (E) in Figure 9).

Case: 𝐸ଵ 1, 𝑔 0 < 𝐸ଵ 𝑟, ℎ 0

λ~ Patch Size Squared

(C)
𝑣 cannot 

invade with 
small initial 

density
𝑢∗, 0

stable.

(B)
Dynamics can  
vary & depend 
on geometry of 

Ω.

(D)
Dynamics 
can vary & 
depend on 
geometry 

of Ω.

(E)
Coexistence 

& 𝑣 can 
invade if 𝑢 is 

present.
𝑢∗, 0 is 

unstable.

(F)

Coexistence

Eଵ 1, 𝑔 0 Eଵ 1, 𝑔 0 + 𝛿ଵ Eଵ 𝑟, ℎ 0 − 𝛿ଶ Eଵ 𝑟, ℎ 0 Eଵ
஽

𝑢 invades/persists on its own

𝑣 invades/persists on its own

0
𝜆∗

λ

Neither 𝑢 nor 𝑣 can invade Ω with 
small initial density

(0,0) is stable.

(A)

Coexistence is 
not possible.

Figure 9. Existence versus λ when E1(1, g(0)) < E1(r, h(0)).

Figure 10. Example of a bifurcation diagram for the case E1(1, g(0)) < E1(r, h(0)).

Remark
In the forthcoming paper [49], we give a more detailed description of model predictions of persistence
as λ varies in the case of a one-dimensional patch, as well as some numerically generated examples
of actual steady state density profiles in the case of coexistence (e.g., in (E) and (F) from Figure 7).
Preliminary results indicate that in ranges where trait-mediated coexistence occurs (e.g., (E) in
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Figure 7), the actual steady state density profiles are symmetric about the patch center (x = 1
2 ), with

the organism that is able to colonize the patch having a much larger steady state maximum than the
organism which requires the first to colonize the patch.

Finally, we present a table to help depict the portions of the parameter space corresponding to each
of the three cases. It is easy to see that each of the three cases discussed previously are possible
regardless of the difference in patch intrinsic growth rate and diffusion rate between the species. The
main determining factor here appears to be the effective matrix hostility as represented in g(0) for u
and h(0) for v.

Figure 11. Depiction of the portions of the parameter space corresponding to each of the
three cases for r.

3.1. Biological interpretation

In each of the three cases of comparison for E1(1, g(0)) and E1(r, h(0)), the model predicts coexis-
tence for patch sizes large enough such that λ > λ∗∗ (see (C) in Figure 5, for example). This is due to
the fact that sufficiently large patches have a core region large enough to ensure persistence, even in the
presence of mortality from interacting with the hostile matrix at the patch boundary. Note that exactly
the opposite effect is seen for patches so small that their λ-value falls below λ∗ (see (A) in Figure 5, for
example), in that the model predicts extinction regardless of the initial population density.

In the case that E1(1, g(0)) = E1(r, h(0)), there is a stark change in model outcomes as λ drops
below E1(1, g(0)) (see (B) and (C) in Figure 5), with the model predicting that neither species is able to
invade the patch with small positive initial density. Since λ∗ < E1(1, g(0)), a situation can arise where
coexistence is still possible for patch sizes with corresponding λ-values in (λ∗, E1(1, g(0))). In that case,
coexistence is due directly to the effect of trait-mediated dispersal since presence of the other organism
causes a decrease in emigration out of the patch, i.e., we have a situation with dispersal-mediated
coexistence.

Since the remaining two cases are symmetric, we will only give a biological interpretation for the
case when E1(1, g(0)) > E1(r, h(0)). As previously noted, a mutualistic system can fall into this case
regardless of which species is better able to invade and persist in the patch. In fact, all that is required
is that v’s effective matrix hostility is sufficiently small compared with u’s effective matrix hostility.
For patch sizes corresponding to λ ∈ (E1(1, g(0)) − δ2, E1(1, g(0))) (see (E) in Figure 7), the model
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predicts that, on its own, u is unable to successfully invade the patch, whereas v is able to invade
the patch with small initial positive density independent of u. Most interestingly, the model predicts
that u is able to invade with small initial population density and coexist in the patch as long as v is
already established in the patch and near its steady state (independent of u), i.e., dispersal-mediated
coexistence. The mechanism directly responsible for this outcome is trait-mediated dispersal. In other
words, the presence of v in the patch decreases u’s emigration rate low enough that u is able to persist in
the patch. We also note that in this case, the role of coexistence facilitator can be reversed by increasing
the facilitator’s effective matrix hostility or decreasing the other species hostility. This reversal is in the
same spirit as the one observed in a competitive system studied in [26] and [33], where changing the
matrix hostility caused a competitive dominance reversal.

For patch sizes with λ ∈ (λ∗, E1(r, h(0)) or λ ∈ (E1(r, h(0))+δ1, E1(1, g(0))−δ2) (see (B) or (D) in Fig-
ure 7), our methods are not able to give general results regarding model predictions. In other words, the
dynamics can vary greatly depending on the patch geometry and parameter values. Patch sizes giving
a λ in (E1(r, h(0)), E1(r, h(0)) + δ1) (see (C) in Figure 7) yield a model prediction that even with v being
established in the patch is not enough to allow u to invade the patch and persist. However, our results
do not exclude the possibility of dispersal-mediated coexistence for λ in (E1(r, h(0)), E1(r, h(0)) + δ1)
and certain ranges of r, g(0), and h(0). In the case of trait-mediated coexistence, the model would
predict a type of Allee effect for λ in this range, as the semitrivial steady state (0, v∗) and a positive
coexistence steady state would both be stable, giving rise to a dispersal-mediated Allee effect. This
case has actually been observed by the authors in a model similar to (1.3), but for a one-dimensional
patch (see [49]). Finally, for patch sizes corresponding to λ ∈ (λ∗, E1(r, h(0))) (see (B) in Figure 7), the
model outcome is the same as in the case when E1(1, g(0)) = E1(r, h(0)).

4. Proofs of main results

We first introduce definitions of a subsolution and a supersolution of (1.4) and then state a lemma
from [46] that will be employed to prove our existence results for positive solutions of (1.4).
By a subsolution of (1.4), we mean a pair of functions (ψ1, ψ2) ∈ C2(Ω) ∩C1(Ω) that satisfies:

−∆ψ1 ≤ λψ1(1 − ψ1); Ω

−∆ψ2 ≤ λrψ2(1 − ψ2); Ω
∂ψ1
∂η

+
√
λg(ψ2)ψ1 ≤ 0; ∂Ω

∂ψ2
∂η

+
√
λh(ψ1)ψ2 ≤ 0; ∂Ω.

By a supersolution of (1.4), we mean a pair of functions (z1, z2) ∈ C2(Ω) ∩C1(Ω) that satisfies:
−∆z1 ≥ λz1(1 − z1); Ω

−∆z2 ≥ λrz2(1 − z2); Ω
∂z1
∂η

+
√
λg(z2)z1 ≥ 0; ∂Ω

∂z2
∂η

+
√
λh(z1)z2 ≥ 0; ∂Ω.

Then the following result holds (see [46]).
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Lemma 4.1. Let (ψ1, ψ2) and (z1, z2) be a subsolution and a supersolution of (1.4) respectively such
that (ψ1, ψ2) ≤ (z1, z2). Then (1.4) has a solution (u, v) ∈ C2(Ω) ∩ C1(Ω) such that (ψ1, ψ2) ≤ (u, v) ≤
(z1, z2).

Now, we consider the eigenvalue problem:{
−∆φ = µφ; Ω

∂φ

∂η
+ β(x)φ = 0; ∂Ω

(4.1)

where β is a nonnegative continuous function on ∂Ω. Let µ1 = µ1(β) denote the principal eigencurve
of (4.1). Note that µ1 increases in β (see [39]). For a fixed K > 0, when β =

√
λK, by Lemmas 2

& 3 in [48], the principal eigencurve µ1(
√
λK) = Ē1(

√
λK) is strictly increasing and concave in λ.

Moreover, µ1(0) = 0 and µ1(
√
λK) → ED

1 as λ → ∞ where ED
1 is the principal eigenvalue of (2.2).

Thus, comparing (2.7), (2.8), (2.9) and (2.10) with (4.1) we obtain

σ1 = µ1(
√
λg(0)) − λ,

σ2 = µ1(
√
λh(0)) − λr,

σ3 = µ1(
√
λh(w̃1)) − λr,

σ4 = µ1(
√
λg(w̃2)) − λ,

(4.2)

respectively.
Now, we will provide proofs of Theorem 3.1–3.3. Note that the proof of Theorem 3.4 is not provided

since it is very similar to the proof of Theorem 3.3.
Proof of Theorem 3.1
(a) We first introduce the eigenvalue problems:{

−∆ψ1 − λψ1 = σψ1; Ω
∂ψ1
∂η

+
√
λg(1)ψ1 = 0; ∂Ω

(4.3)

and {
−∆ψ2 − λrψ2 = σψ2; Ω
∂ψ2
∂η

+
√
λh(1)ψ2 = 0; ∂Ω.

(4.4)

Let σ̃1 = σ̃1(Ω, λ, g(1)), σ̃2 = σ̃2(Ω, λ, r, h(1)) be the principal eigenvalues and ψ1, ψ2 > 0; Ω the
corresponding normalized eigenfunction of (4.3) and (4.4), respectively. Comparing (4.3) and (4.4)
with (4.1), we obtain

σ̃1 = µ1(
√
λg(1)) − λ (4.5)

σ̃2 = µ1(
√
λh(1)) − λr. (4.6)

Note that at λ = E1(1, g(1)), µ1(
√

E1(1, g(1))g(1)) = E1(1, g(1)) and at λ = E1(r, h(1)),
µ1(
√

E1(r, h(1))h(1)) = rE1(r, h(1)). Since µ1(
√
λK) is concave, we must have that µ1(

√
λg(1)) > λ

for λ < E1(1, g(1)) and µ1(
√
λh(1)) > λr for λ < E1(r, h(1)). Then (4.5) and (4.6) imply that σ̃1 > 0

for λ < E1(1, g(1)) and σ̃2 > 0 for λ < E1(r, h(1)) respectively. Assume to the contrary that (u, v) is a
positive solution of (1.4) for λ < λ∗.
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Case I: E1(r, h(1)) ≤ E1(1, g(1))
By Green’s Second Identity, we obtain∫

Ω

[(∆u)ψ1 − (∆ψ1)u]dx =

∫
∂Ω

[(−
√
λg(v)u)ψ1 + (

√
λg(1)ψ1)u]ds

=

∫
∂Ω

√
λ(g(1) − g(v))uψ1ds < 0

while ∫
Ω

[(∆u)ψ1 − (∆ψ1)u]dx =

∫
Ω

[(−λu(1 − u))ψ1 + ((λ + σ̃1)ψ1)u]dx

=

∫
Ω

(λu + σ̃1)uψ1dx > 0

giving rise to a contradiction.
Case II: E1(r, h(1)) > E1(1, g(1))∫

Ω

[(∆v)ψ2 − (∆ψ2)v]dx =

∫
∂Ω

[(−
√
λh(u)v)ψ2 + (

√
λh(1)ψ2)v]ds

=

∫
∂Ω

√
λ(h(1) − h(v))vψ2ds < 0

while ∫
Ω

[(∆v)ψ2 − (∆ψ2)v]dx =

∫
Ω

[(−λrv(1 − v))ψ2 + ((λr + σ̃2)ψ2)v]dx

=

∫
Ω

(λrv + σ̃2)vψ2dx > 0

again providing a contradiction.
(b) Following an argument such as one in [29], we have that if λ > λ∗∗ then σ1, σ2 < 0. By Lemma 2.2,
the unique positive solution w̃1 of (2.5) exists, and the unique positive solution w̃2 of (2.6) exists. Now
since g and h are decreasing functions, w̃1 and w̃2 satisfy:

−∆w̃1 = λw̃1(1 − w̃1); Ω,

∂w̃1

∂η
= −
√
λg(0)w̃1 < −

√
λg(w̃2)w̃1; ∂Ω

and

−∆w̃2 = λrw̃2(1 − w̃2); Ω,

∂w̃2

∂η
= −
√
λh(0)w̃2 < −

√
λh(w̃1)w̃2; ∂Ω.

Thus, (w̃1, w̃2) is a strict subsolution of (1.4). Since g and h are positive functions it is easy to see that
(1, 1) is a supersolution of (1.4). Hence, by Lemma 4.1 there exists a positive solution (u∗, v∗) of (1.4)
such that (w̃1, w̃2) ≤ (u∗, v∗) ≤ (1, 1); Ω. Since (w̃1, w̃2) is a strict subsolution of (1.4), all positive
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solutions of (1.4), (u∗, v∗), must satisfy (u∗, v∗) > (w̃1, w̃2); Ω. Finally, the furthermore statement holds
since, by an analogous version of Theorem 5.1 in Chapter 10 of [46], any solution of (1.3), (u, v), with
small positive initial density will converge to a minimal positive steady state of (1.3) in 〈(w̃1, w̃2), (1, 1)〉
as t → ∞. This completes the proof.

Next, we prove Theorem 3.2.
Proof of Theorem 3.2
Parts (a) and (c) are clear. To prove (b), we consider three cases, namely, r = 1, r < 1, and r > 1. Note
that we only provide proofs of the cases r = 1 and r < 1, as the case when r > 1 is almost identical to
the r < 1 case.
Case I: r = 1 (which implies that g(0) = h(0))
When β =

√
λg(0) =

√
λh(0), we have µ1(

√
λg(0)) = µ1(

√
λh(0)). Also, we have that

µ1(
√

E1(1, g(0))g(0)) = E1(1, g(0)) at λ = E1(1, g(0)) and µ1(
√

E1(1, h(0))h(0)) = E1(1, h(0)) at λ =

E1(1, h(0)). Now, since µ1(
√
λK) is concave in λ and by (4.2), we obtain σ1 = µ1(

√
λg(0)) − λ ≥ 0,

σ2 = µ1(
√
λh(0)) − λ ≥ 0 for λ ≤ E1(1, g(0)) and σ1 < 0, σ2 < 0 for λ > E1(1, g(0)). Since g and

h are decreasing, we have µ1(
√
λg(w̃2)) < µ1(

√
λg(0)) and µ1(

√
λh(w̃1)) < µ1(

√
λh(0)). This implies

σ3 = µ1(
√
λg(w̃2)) − λ < 0 and σ4 = µ1(

√
λh(w̃1)) − λ < 0 for λ > E1(1, g(0)). Figure (12) illustrates

the main argument of this case.

Figure 12. Principal eigencurves µ1(
√
λg(0)) and µ1(

√
λh(0)) with r = 1.

Case II: r < 1 (which implies that g(0) > h(0))
When β =

√
λg(0) >

√
λh(0), we have µ1(

√
λg(0)) > µ1(

√
λh(0)). We also have that

µ1(
√

E1(1, g(0))g(0)) = E1(1, g(0)) at λ = E1(1, g(0)) and µ1(
√

E1(r, h(0))h(0)) = rE1(r, h(0)) at
λ = E1(r, h(0)). Now, since µ1(

√
λK) is concave in λ and by (4.2), we obtain that σ1 ≥ 0, σ2 ≥ 0 for

λ ≤ E1(1, g(0)) and σ1 < 0, σ2 < 0 for λ > E1(1, g(0)). Since g and h are decreasing, we have that
µ1(
√
λg(w̃2)) < µ1(

√
λg(0)) and µ1(

√
λh(w̃1)) < µ1(

√
λh(0)). This implies σ3 = µ1(

√
λg(w̃2)) − λ < 0

and σ4 = µ1(
√
λh(w̃1)) − λr < 0 for λ > E1(1, g(0)). Figure (13) provides an illustration of the main

argument of this case.
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Figure 13. Principal eigencurves µ1(
√
λg(0)) and µ1(

√
λh(0)) with r < 1.

This completes the proof.
We now prove Theorem 3.3.

Proof of Theorem 3.3
Proof of (a) and (b) are clear. Next, we prove part (c). By part (a), σ1 < 0 for λ > E1(1, g(0)). Now,
by Lemma 2.2, w̃1 exists for λ > E1(1, g(0)). Here, we note that at λ = E1(r, h(0)),

µ1(
√

E1(r, h(0))h(0)) = rE1(r, h(0)).

Then, since µ1(
√
λh(0)) is concave in λ,

µ1(
√
λh(0)) < rλ for λ > E1(r, h(0)). (4.7)

Since h is decreasing, the inequality

µ1(
√
λh(w̃1)) < µ1(

√
λh(0)) (4.8)

holds for λ > E1(1, g(0)). Now (4.7) and (4.8) imply that µ1(
√
λh(w̃1)) < rλ for λ > E1(1, g(0)). Thus,

σ3 = µ1(
√
λh(w̃1)) − rλ < 0 for λ > E1(1, g(0)). This completes the proof of (c).

In order to prove (d), we must consider three cases: g(0) < h(0), g(0) = h(0), and g(0) > h(0).
However, we will only provide a proof for the first case, as the remaining cases are almost identical to
the first.
Case I: (g(0) < h(0))
First, we note that

E1(1, g(0)) = µ1(
√

E1(1, g(0))g(0)).

Since µ1(
√
λg(0)) is concave in λ, the inequality:

λ < µ1(
√
λg(0)) (4.9)

holds for λ < E1(1, g(0)). This implies that

E1(r, h(0)) < µ1(
√

E1(r, h(0))g(0)). (4.10)
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Note that µ1(
√
λg(w̃2)) < µ1(

√
λg(0)) for λ > E1(r, h(0)) and µ1(

√
λg(w̃2)) → µ1(

√
E1(r, h(0))g(0)) as

λ → E1(r, h(0))+. This with (4.10) and by continuity imply that there exists δ1(r, g(0), h(0)) such that
λ < µ1(

√
λg(w̃2)) for λ ∈ (E1(r, h(0)), E1(r, h(0)) + δ1). This implies σ4 = µ1(

√
λg(w̃2)) − λ > 0 for

λ ∈ (E1(r, h(0)), E1(r, h(0)) + δ1).

Since E1(1, g(0)) = µ1(
√

E1(1, g(0))g(0)) and µ1(
√

E1(1, g(0))g(w̃2)) < µ1(
√

E1(1, g(0))g(0)), by
continuity, there exists δ2(g(0), h(0), r) > 0 such that µ1(

√
λg(w̃2)) < λ for λ > E1(1, g(0)) − δ2. This

implies σ4 = µ1(
√
λg(w̃2)) − λ < 0 for λ > E1(1, g(0)) − δ2. Also see Figure (14). In this case,

E1(1, g(0)) < E1(1, h(0)) since g(0) < h(0). Using (2.4) we obtain E1(1, g(0)) < rE1(r, h(0)). Now this
with E1(1, g(0)) > E1(r, h(0)) implies r > 1.

Figure 14. Principal eigencurves µ1(
√
λg(0)) and µ1(

√
λh(0)) when E1(r, h(0)) < E1(1, g(0))

and g(0) < h(0).

Next, we provide a proof of coexistence. Since λ > E1(r, h(0)) we have that σ2 < 0. Thus,
by Lemma 2.2, the unique solution w̃2 of (2.6) exists. Also, part (d) implies that σ4 < 0 for λ >

E1(1, g(0)) − δ2. Let y1 = εφ4 and y2 = w̃2. Now choose ε > 0 and ε ≈ 0 such that σ4 ≤ −λεφ4 and
εφ4 ≤ 1 . Now by (2.10), y1 satisfies:

−∆y1 = ε(λ + σ4)φ4 ≤ ε(λ − λεφ4)φ4 = λy1(1 − y1); Ω,

∂y1

∂η
= −
√
λg(w̃2)εφ4

= −
√
λg(y2)y1; ∂Ω.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7838–7861.



7857

Further, since h is decreasing, y2 satisfies:

−∆y2 = (−∆w̃2) = λw̃2(1 − w̃2) = λy2(1 − y2); Ω

∂y2

∂η
= −
√
λh(0)w̃2

≤ −
√
λh(εφ4)y2

= −
√
λh(y1)y2; ∂Ω.

Thus (εφ4, w̃2) is a subsolution of (1.4). Since g and h are positive functions it is easy to see that (1, 1)
is a supersolution of (1.4). Hence, by Lemma 4.1 there exists a positive solution (u, v) of (1.4) such that
(εφ4, w̃2) ≤ (u, v) ≤ (1, 1); Ω. Finally, by an analogous version of Theorem 5.1 in Chapter 10 of [46],
any solution of (1.3), (u, v), with (u(0, x), v(0, x)) ≥ (≈) (εφ4(x), w̃2(x)); Ω and ε < ε1 will converge to
a minimal positive steady state of (1.3) in 〈(εφ4(x), w̃2), (1, 1)〉 as t → ∞. This completes the proof.

5. Conclusions

Our mathematical analysis of the model (1.1) demonstrates that trait-mediated dispersal can have
important impacts on coexistence of mutualists. Specifically, one species can invade and persist be-
cause it has either a high growth rate, low diffusion rate, or a lower effective matrix hostility. Either
way, the population for that species can build up in the patch which can favor the coexistence of the
other species by reducing that species likelihood of leaving the patch. We also found that the role
of coexistence facilitator can be reversed by increasing the facilitator’s effective matrix hostility or
decreasing the other species hostility. As most mutualistic relationships are identified on the basis
of density-mediated effects, it is easily possible that such a trait-mediated effect may be overlooked.
Our study complements the existing research that trait-mediated dispersal can affect the interactions
and coexistence between predators and their prey and competing species. The presence of predators
or their cues can elicit the production of wings [50] or an increase in emigration rate (e.g., [11–14]).
Numerous studies have explored the role of dispersal in affecting the coexistence of predators and
prey in fragmented landscapes (e.g., [51–54]). Similarly, although much less studied, the occurrence
of interspecific competitors can also promote increased dispersal [55, 56]. One commonly reported
mechanism promoting the coexistence of competitors is a tradeoff between dispersal and interspecific
competition whereby poorly competitive but highly dispersive species can coexist with highly compet-
itive but poorly dispersive species (e.g., [57–59]). For animal species engaged in mutualisms, studies in
addition to our own have shown that dispersal can affect species coexistence [60]. To date, few empir-
ical studies of trait-mediated dispersal have been conducted with mutualists (but see e.g., [17–20,61]).
However, we submit that dispersal mediated indirect effects are likely as common and important in
mutualisms as they are in predator-prey and competing-species interactions.

From a conservation point of view, our results greatly support the need to more carefully consider
trait-mediated effects in the conservation effort. For example, an endangered species in a trait-mediated
dispersal relationship with an unknown second species may setup a situation where the unidentified
mutualist is responsible for allowing the endangered species to thrive in a patch. If this supporting
species is somehow expelled from the patch, our results indicate that habit fragmentation via reduction
of patch size or increase of matrix hostility may push the endangered species into a situation where its
population suddenly crashes.
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Our results are quite general in the sense that we did not make any assumptions on the patch geome-
try (other than assuming that the patch boundary is smooth), patch dimension, or the density dependent
emigration relationship, other than assuming it’s mutualistic. Furthermore, in an effort to isolate the
effects of trait-mediated dispersal on the mutualistic system, we assumed that the two species did not
exhibit any direct density-mediated effects. This indicates that predictions of our model are likely to
be found in mutualistic systems that exhibit trait-mediated dispersal. However, in reality, it is probably
very unlikely that a mutualistic system would exhibit trait-mediated dispersal without density-mediated
effects. We are currently exploring the system in the case where density-mediated effects are also in-
cluded in the model.
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